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Introduction 

Impulsive differential equations arise naturally from a wide variety 
of applications such as aircraft control, inspection process in operations 
research and threshold theory in biology. Significant progress has been 
made in the theory of differential equations in recent years. But still there 
are number of difficulties one may face in developing the corresponding 
theory of impulsive delay differential equations. For example in the 
classical theory of delay differential equations, the fact that the continuity of 
a function 𝑥(𝑡) in 𝑅𝑛  implies the continuity of the functional 𝑥𝑡  in 𝐶𝑛 , plays a 

key role in establishing the existence of solution of delay differential 
equations [1]. However if the function 𝑥(𝑡) is piecewise continuous, then 

the functional 𝑥𝑡  need not be piecewise continuous. In fact, it can be 

discontinuous everywhere. Existence and uniqueness results for impulsive 
delay differential equations have been presented in [2]. In [6,7], by using 
Lyapunov functions and Razumikhin techniques, some Razumikhin type 
theorems on stability are obtained for a class of impulsive functional 
differential equations with finite delay. However as pointed out in [8-10] 
even though for functional differential equations without impulses, stability 
results established for equations with finite delay are not obviously true in 
general  for infinite delays. The common and main difficulty is that the 

interval (−∞, 𝑡0] is not compact and the images of a solution map of closed 

and bounded sets in ((−∞, 𝑡0] ,𝑅𝑛) space may not be compact. Same 

situation arises in ((−∞, 𝑡0] ,𝑅𝑛)  space for impulsive differential equation 
with infinite delay. Recall that the stability theory of impulsive differential 
equations with infinite delays had received much attention in the literature 
[11-16].Here we extend the result develop in [3] to study infinite delay 
differential equations.  
Aim of the Study 

The purpose of present paper is to establish some criteria on 
uniform asymptotic stability for impulsive differential equations with infinite 
delay using Lyapunov functions and Razumikhin techniques. 
Review of Literature 

In past years there have been intensive studies on the stability of 
Impulsive Differential equations.In 1991, M. ramamohana Rao, investigates 
sufficient condition for uniform stability and uniform asymptotic stability of 
impulsive integro differential equations by constructing suitable piecewise 
continuous Lyapunov-like functionals without the decresent property. 
M.U.Akhmet,investigate the sufficient criteria for stability, asymptotic 
stability and instability for non-trivial solutions of the impulsive systems by 
Lyapunov’s second method.Jianhua Shen and Jianli Li, investigates the 
sufficient criteria on asymptotic stability for system of volterra functional 
differential equations with nonlinear impulsive perturbations using 
Lyapunov like functions with Razumikhin technique or Lyapunov like 
functional. 

 
 

  

Abstract 
In this paper criteria on uniform asymptotic stability is established 

for impulsive functional differential equations with infinite delay. It is 
shown that certain impulsive perturbations may make unstable systems 
uniformly stable, even uniformly asymptotically stable. 
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 Preliminaries 

Let 𝑅𝑛  be a space of  𝑛 dimensional column 

vectors 𝑥 = 𝑐𝑜𝑙(𝑥1 , … … … . , 𝑥𝑛 ) with some norm   .  . 
Let 𝐽 ⊂ 𝑅 be any interval of the form  𝑎, 𝑏  where 

0 ≤ 𝑎 < 𝑏 ≤ ∞ and 𝐷 ⊂ 𝑅𝑛  be an open set. Consider 

the system  

                 𝑥 ′ 𝑡 = 𝐹 𝑡, 𝑥 .   ,            𝑡 > 𝑡∗        2.1  

∆𝑥 𝑡𝑘 = 𝐼(𝑡𝑘 , 𝑥 𝑡𝑘
− ,    𝑘 = 1,2, … . .                (2.2) 

Where 𝑥 ′ 𝑡  denote the right hand derivative 

of 𝑥 𝑡 , 𝑡∗ < 𝑡𝑘 < 𝑡𝑘+1 with 𝑡𝑘 → ∞ as 𝑘 → ∞,
𝐼:  𝑡∗, ∞ × 𝑅𝑛 → 𝑅𝑛  and 𝑥 𝑡𝑘

− = lim𝑡→𝑡𝑘−0 𝑥 𝑡  

Define 𝑃𝐶 𝐽, 𝑅𝑛 =  𝑥: 𝐽 → 𝑅𝑛  𝑥 is continuous 

everywhere except at the points𝑡 = 𝑡𝑘 ∈ 𝐽 and 𝑥 𝑡𝑘
−  

and 𝑥 𝑡𝑘
+ = lim𝑡→𝑡𝑘+0 𝑥 𝑡  exist with 𝑥 𝑡𝑘

+ = 𝑥(𝑡𝑘)] 

For any 𝑡 ≥ 𝜎, 𝑃𝐶( 𝛼, 𝑡 , 𝑅𝑛) will be written as 

𝑃𝐶(𝑡). 
Define 𝑃𝐶𝐵 𝑡 =  𝑥 ∈ 𝑃𝐶 𝑡  𝑥 is bounded]. 

For any ∅ ∈ 𝑃𝐶𝐵 𝑡 , the norm of ∅ is defined by 

 ∅ =  ∅ [𝛼 ,𝑡] =  ∅(𝑠) 𝛼≤𝑠≤𝑡
𝑠𝑢𝑝

.  For any 𝜎 ≥ 𝑡∗ and 

∅ ∈ 𝑃𝐶𝐵(𝜎) with equations (2.1) and (2.2), one 

associates an initial condition of the form 
                   𝑥𝜎 𝑡 = ∅ 𝑡 ;  𝛼 ≤ 𝑡 ≤ 𝜎                                 (2.3) 
Definition 2.1 

The trivial solution of (2.1) is said to be 
i. stable if for every 𝜖 > 0 and 𝜎 ∈ 𝑅+, there exists 

some 𝛿 = 𝛿 𝜎, 𝜖 > 0 such that if 𝜑 ∈
𝑃𝐶( 𝛼, 𝑡 , 𝑅𝑛) with  𝜑 𝑟 ≤ 𝛿 and 𝑥 = 𝑥(𝜎, ∅) is 

any solution of (2.1) and (2.2) then 𝑥(𝑡, 𝜎, 𝜑) is 

defined and  𝑥(𝑡, 𝜎, 𝜑) ≤ 𝜖 for all 𝑡 ≥ 𝜎 

ii. Uniformly stable if 𝛿 in (i) is independent of 𝜎 

iii. Asymptotically stable if (i) holds and for any 𝜎 ∈
𝑅, there exists some 𝜂 = 𝜂 𝜎 > 0 such that if 

𝜑 ∈ 𝑃𝐶  𝛼, 𝑡 , 𝑅𝑛   with  𝜑 𝑟 ≤ 𝜂, then  

lim𝑡→∞ 𝑥 𝑡, 𝜎, 𝜑 = 0 
iv. Uniformly asymptotically stable if (ii) holds and 

there exists some 𝜂 > 0 such that for every 𝛾 > 0, 

there exist some 𝑇 = 𝑇 𝜂, 𝛾 > 0 such that if 

𝜑 ∈ 𝑃𝐶[ 𝛼, 𝑡 , 𝑅𝑛 ] with  𝜑 𝑟 ≤ 𝜂 then 
 𝑥(𝑡, 𝜎, 𝜑) ≤ 𝛾 for all 𝑡 ≥ 𝜎 + 𝑇 

Definition 2.2 

A function 𝑥(𝑡) is called a solution 

corresponding to 𝜎 of the initial value problem (2.1) – 

(2.3) if 𝑥:  𝛼, 𝛽 → 𝑅𝑛  (for some 𝑡∗ < 𝛽 < ∞) is 

continuous for 𝑡 ∈  𝛼, 𝛽 \  𝑡𝑘 , 𝑘 = 1,2, … . .  , 𝑥(𝑡𝑘
+) and 

(𝑥𝑘
−) exist and 𝑥 𝑡𝑘

+ = 𝑥 𝑡𝑘 , and satisfies (2.1) – 

(2.3) 
Under the following hypothesis (H1) – (H4), the 

initial value problem (2.1) - (2.3) exists with unique 
solution which will be written in the form 𝑥(𝑡, 𝜎, 𝜑) (see 

[5]) 
(H1) F is continuous on [𝑡𝑘−1 , 𝑡𝑘) × 𝑃𝐶(𝑡) for 

𝑘 = 1,2, … .. where 𝑡0 = 𝑡∗. For all ∅ ∈ 𝑃𝐶(𝑡) and 

𝑘 = 1,2, … .. , the limit lim(𝑡 ,∅)→(𝑡𝑘
−,𝜑) 𝐹 𝑡, ∅ = 𝐹( 𝑡𝑘

−, 𝜑) 

exists. 
(H2) F is locally Lipchitz in ∅ in each compact 

set in 𝑃𝐶𝐵(𝑡). More precisely, for any 𝛾 ∈ [𝛼, 𝛽) and 
every compact set 𝐺 ⊂ 𝑃𝐶𝐵(𝑡), there exist a constant 

𝐿 = 𝐿 𝛾, 𝐺 such that  𝐹 𝑡, 𝜑 .   − 𝐹(𝑡, 𝜓 .  ) ≤

𝐿 𝜑 − 𝜓 [𝛼 ,𝑡]whenever 𝑡 ∈ [𝛼, 𝛾] and 𝜑, 𝜓 ∈ 𝐺 

(H3) For each 𝑘 = 1,2, … … , 𝐼(𝑡, 𝑥) ∈ 𝐶([𝑡∗, ∞) ×
𝑅𝑛 , 𝑅𝑛) and for any 𝜌 > 0, there exist a 𝜌1 >  0 (0 <

𝜌1 < 𝜌) such that 𝑥 ∈ 𝑆 𝜌1 implies that  𝑥 + 𝐼(𝑡𝑘 , 𝑥) ∈
𝑆(𝜌) for 𝑘 ∈ 𝑍+ 

(H4) For any 𝑥 𝑡 ∈ 𝑃𝐶  𝛼, ∞ , 𝑅𝑛 , 𝐹(𝑡, 𝑥 .  ) ∈
𝑃𝐶( 𝑡∗, ∞ , 𝑅𝑛 ) 

For any 𝑡 ≥ 𝑡∗,  > 0 let 𝑃𝐶𝐵 𝑡 = 𝑃{∅ ∈
𝑃𝐶𝐵 𝑡 :  ∅ < } 

We assume that 𝐹 𝑡, 0 ≡ 0, 𝐼(𝑡𝑘 , 0) ≡ 0 so 

that 𝑥 𝑡 ≡ 0 is a solution of (2.1) and (2.2), which we 

call the zero solution. Also, we will only consider the 
solutions 𝑥(𝑡, 𝜎, 𝜑) of equations (2.1) and (2.2). 

Let us define following class of functions for 
later use: 

𝐾1 =  𝑔 ∈ 𝐶 𝑅+, 𝑅+  𝑔 0 = 0 and 𝑔 𝑠 > 0 for 

𝑠 > 0}; 
𝐾2 =  𝑔 ∈ 𝐶 𝑅+, 𝑅+  𝑔 0 = 0 and 𝑔 𝑠 > 0 for 

𝑠 > 0 and 𝑔 is non decreasing in 𝑠}. 
Main Results 
Theorem 3.1 

Assume that there exist functions 𝑎, 𝑏, 𝑐 ∈
𝐾1 , 𝑝, 𝑞 ∈ 𝑃𝐶 𝑅+, 𝑅+ , 𝑔 ∈ 𝐾2 and 𝑉:  𝑡∗, ∞ × 𝑆 𝜌 →
𝑅+, where 𝑉 is continuous on [𝑡𝑘−1 , 𝑡𝑘) × 𝑆(𝜌1) for 
𝑘 = 1,2, … . ., such that 𝑞 𝑠 is non increasing with 

𝑞 𝑠 > 0for 𝑠 > 0. Assume that the following 

conditions hold: 

i. 𝑏  𝑥  ≤ 𝑉 𝑡, 𝑥 𝑡  ≤ 𝑎  𝑥  forall 𝑡, 𝑥 ∈

[𝑡∗, ∞) × 𝑆(𝜌) 
ii. 𝑉′ 𝑡, 𝑥 𝑡  ≤

𝑝 𝑡 𝑐(𝑉 𝑡, 𝑥 𝑡  foranysolution𝑥 𝑡 = 𝑥 𝑡, 𝜎, 𝜑 of 

(2.1) and (2.2) whenever𝑉 𝑡, 𝑥 𝑡  >

𝑔(𝑉 𝑠, 𝑥 𝑠  for  𝑚𝑎𝑥  𝛼, 𝑡 − 𝑞  𝑉 𝑡, 𝑥 𝑡    ≤ 𝑠 ≤

𝑡; 
iii. 𝑉(𝑡𝑘 , 𝑥 + 𝐼 𝑡𝑘 , 𝑥 ) ≤ 𝑔(𝑉 𝑡𝑘

−, 𝑥 ) for each𝑘 ∈ 𝑍+ 

and all 𝑥 ∈ 𝑆(𝜌1) 
iv. 𝜏 =

 𝑡𝑘 − 𝑡𝑘−1 < ∞,   𝑀1 =  𝑝 𝑠 𝑑𝑠 < ∞
𝑡𝑘+1

𝑡𝑘𝑘∈𝑍+

𝑠𝑢𝑝

𝑘∈𝑍+
𝑠𝑢𝑝

and 𝑀2 =  
𝑑𝑠

𝑐 𝑠 
> 𝑀1

𝑢

𝑔 𝑢 
𝑢>0

𝑖𝑛𝑓
 

Then the zero solution of (2.1) and (2.2) is 
uniformly asymptotically stable. 
Proof 

Condition (i) implies 𝑏(𝑠) ≤ 𝑎(𝑠) for all  𝑠 ∈

[0, 𝜌]. So let 𝑎  and 𝑏  be continuous, strictly increasing 

functions satisfying𝑏 (𝑠) ≤ 𝑏(𝑠) ≤ 𝑎(𝑠) ≤ 𝑎 (𝑠), for all 

𝑠 ∈ [0, 𝜌]. Then 

𝑏   𝑥  ≤ 𝑉 𝑡, 𝑥 ≤ 𝑎   𝑥   3.1  
for all (𝑡, 𝑥) ∈ [𝑡∗, ∞) × 𝑆(𝜌).  

From the definition of (𝑀2), we see that 

0 < 𝑔 𝑢 < 𝑢 for all 𝑢 > 0. 

We first show the uniform stability. 
Let 𝜖 > 0 be given and assume without loss of 

generality that 𝜖 ≤ 𝜌1. Choose a positive number 

𝛿 = 𝛿 𝜖 > 0 so that 𝛿 < 𝑎 −1(𝑔  𝑏  𝜖  )  and note that 

0 < 𝛿 < 𝜖. Let 𝜎 ≥ 𝑡∗ and 𝜑 ∈ 𝑃𝐶𝐵𝛿(𝜎) and 𝑥 𝑡 =
𝑥(𝑡, 𝜎, 𝜑) be the solution of (2.1) and (2.2).  

Let  𝜎, 𝜑 ∈ 𝑅+ × 𝑃𝐶  𝑡∗, 0 , 𝐷 where 𝜑 𝑟 ≤ 𝛿.  

Set 𝑉 𝑡 = 𝑉(𝑡, 𝑥 𝑡 ) and let 𝜎 ∈ [𝑡𝑙−1 , 𝑡𝑙) for 
some 𝑙 ∈ 𝑍+ where 𝑡0 = 𝑡∗. We will prove that 
 𝑥(𝑡) ≤ 𝜖 for 𝛼 ≤ 𝑡 ≤ 𝜎.  Suppose for the sake of 

contradiction that  𝑥(𝑡) > 𝜖 for some 𝑡 ∈ [𝜎,∞).Then 

let 𝑡 = inf 𝑡 ≥ 𝜎  𝑥(𝑡) > 𝜖}. Note that  𝑥(𝑡) < 𝜖, we 
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 see that 𝑡 > 𝜎,  𝑥(𝑡) ≤ 𝜖 ≤ 𝜌1 for 𝑡 ∈ [𝜎, 𝑡 ) and either 
 𝑥(𝑡) = 𝜖 or  𝑥(𝑡) > 𝜖 and 𝑡 = 𝑡𝑘   for some 𝑘. In the 

latter case,  𝑥(𝑡) ≤ 𝜌 since  𝑥(𝑡 −) ≤ 𝜖 ≤ 𝜌1 and by 

our assumption on the functional 𝐼.Thus, in either 

case 𝑉(𝑡) is defined for [𝛼, 𝑡 ].  
For 𝑡 ∈ [𝛼, 𝑡 ], define 

                 𝑚 𝑡 = 𝑉 𝑡, 𝑥 𝑡                                                  (3.2) 

 
By the piecewise continuity assumption on 𝑉, 

it follows that 𝑚 ∈ 𝑃𝐶([ 𝛼, 𝑡  , 𝑅+) and 𝑚 𝑡  is 

continuous at each 𝑡 ≠ 𝑡𝑘 in  𝜎, 𝑡  . By (3.1), we have  

𝑏   𝑥(𝑡)  ≤ 𝑚 𝑡 ≤ 𝑎   𝑥 𝑡    3.3  
for 𝑡 ∈ [𝛼, 𝑡 ]. 
Thus  

        𝑚 𝑡 ≤ 𝑎   𝜑 𝑟 ≤ 𝑎  𝛿 < 𝑔  𝑏  𝜖  for 𝑡 ∈ [𝛼, 𝜎]. 

Let 𝑡 = inf 𝑡 ∈  𝜎, 𝑡   𝑚(𝑡) ≥ 𝑏  𝜖 }. Since 

𝑚 𝜎 < 𝑔(𝑏  𝜖 )<𝑏  𝜖  and 𝑚 𝑡  ≥ 𝑏  𝜖 , then𝑡 ∈ (𝜎, 𝑡 ). 

Moreover  𝑚 𝑡 < 𝑏  𝜖 for  𝑡 ∈ (𝜎, 𝑡 ).We claim that 

𝑚 𝑡  = 𝑏  𝜖  and that 𝑡 ≠ 𝑡𝑘  for some k. Clearly we 

must have 𝑚 𝑡  ≥ 𝑏  𝜖 > 0. If 𝑡 = 𝑡𝑘 , for some k, 

then0 < 𝑏  𝜖 ≤ 𝑚 𝑡  ≤ 𝑔 𝑚 𝑡 −  < 𝑚 𝑡 − ≤ 𝑏  𝜖 . By 

assumption (iii), which is impossible.  
Thus 𝑡 ≠ 𝑡𝑘  for any 𝑘, and that in turn implies 

that 𝑚 𝑡  = 𝑏  𝜖  , since 𝑚(𝑡) is continuous at 𝑡.  
Next we consider two possible cases: 

Case I:𝑡𝑙−1 ≤ 𝜎 < 𝑡 < 𝑡𝑙 . Let 𝑡 = sup 𝑡 ∈  𝜎, 𝑡   𝑚(𝑡) ≤

𝑔(𝑏  𝜖 )}.  

Since 𝑚 𝜎 < 𝑔  𝑏  𝜖  , 𝑚 𝑡  = 𝑏  𝜖 ≥

𝑔  𝑏  𝜖   and 𝑚(𝑡) is continuous on   𝜎, 𝑡  , then  

𝑡 ∈  𝜎, 𝑡  , 𝑚 𝑡  = 𝑔(𝑏  𝜖 ) and 𝑚 𝑡 ≥ 𝑔  𝑏  𝜖  for 𝑡 ∈

[𝑡 , 𝑡  ]. Hence for 𝑡 ∈ [𝑡 , 𝑡  ] and 𝛼 ≤ 𝑠 ≤ 𝑡, we have 

𝑔 𝑚 𝑠  ≤ 𝑔  𝑏  𝜖  ≤ 𝑚 𝑡 . In view of condition (ii), 

we have for all 𝑡 ∈  𝑡 , 𝑡  , 𝑚′(𝑡) ≤ 𝑝 𝑡 𝑐(𝑉 𝑡 ) and so  

 
𝑑𝑠

𝑐(𝑠)
≤  𝑝 𝑠 𝑑𝑠 ≤  𝑝 𝑠 𝑑𝑠 ≤ 𝑀1            3.4 

𝑡𝑙

𝑡𝑙−1

𝑡 

𝑡  

𝑚 𝑡  

𝑚 (𝑡  )

 

 
However, we have 

 
𝑑𝑠

𝑐(𝑠)
=  

𝑑𝑠

𝑐(𝑠)

𝑏  𝜖 

𝑔 𝑏  𝜖  

𝑚 𝑡  

𝑚 (𝑡  )

≥ 𝑀2                                        (3.5) 

This contradicts the assumption 𝑀1 < 𝑀2 

 
Case II:𝑡𝑘 < 𝑡 < 𝑡𝑘+1 for some 𝑘. Then 𝑚 𝑡𝑘 ≤

𝑔(𝑚 𝑡𝑘
− ) ≤ 𝑔(𝑏  𝜖 ) by condition (iii). Similar to 

before,define 𝑡 = sup 𝑡 ∈  𝑡𝑘 , 𝑡   𝑚(𝑡) ≤ 𝑔  𝑏  𝜖  } then 

𝑡 ∈  𝑡𝑘 , 𝑡  , 𝑚 𝑡  = 𝑔  𝑏  𝜖    and 𝑚(𝑡) ≤ 𝑔  𝑏  𝜖   for 

𝑡 ∈  𝑡 , 𝑡  . Applying exactly the same argument as 

before yields a contradiction. 
So, in either case, we obtain a contradiction, 

which proves that the zero solution of (2.1) and (2.2) 
is uniformly stable.  

Next we show that it is uniformly 
asymptotically stable. 

Since the zero solution of (2.1) and (2.2) is 
uniformly stable, then there exist some 𝛿 > 0 such 

that if 𝜑 ∈ 𝑃𝐶𝐵𝛿 𝜎 then 𝑥(𝑡) ≤ 𝜌1 , 𝑉 𝑡 ≤ 𝑏  𝜖 , 𝑡 ≥
𝛼.  

Now define  

       𝑀 = sup  
1

𝑐 𝑠 
 | 𝑔  𝑏  𝜖  ≤ 𝑠 ≤ 𝑎  𝜌1                  (3.6) 

and note that0 < 𝑀 < ∞ and so  

        𝑀2 ≤  
𝑑𝑠

𝑐(𝑠)
≤ 𝑀 𝑢 − 𝑔 𝑢                                   (3.7)

𝑢

𝑔(𝑢)

 

from which we obtain 𝑔 𝑢 ≤ 𝑢 −
𝑀2

𝑀
≤ 𝑢 − 𝑑  

where 𝑑 = 𝑑(𝜖) is chosen so that 𝑑 < (𝑀2 − 𝑀1)/𝑀 

Let 𝑤 = 𝑞(𝑔  𝑏  𝜖  ) and 𝑁 be the positive 

integer such that 𝑎  𝜌1 ≤ 𝑏  𝜖 + 𝑁𝑑 and define 

𝑇 = 𝑇 𝜖 = 𝜏 + (𝑤 + 𝜏)(𝑁 − 1). 

Now we will prove that  𝑥(𝑡) ≤ 𝜖 for  𝑡 ≥ 𝜎 +
𝑇. 
Let  

               𝑚 𝑡 = 𝑉 𝑡, 𝑥 𝑡   3.8  

for 𝑡 ≥ 𝛼, then 𝑚(𝑡) ≤ 𝑏  𝜌1  for 𝑡 ≥ 𝛼. Define 

the indicies𝑙𝑖   for  𝑖 = 1,2, … … , 𝑁 as follows: 

Let 𝑙𝑖 = 𝑙 and 𝑙𝑖  be chosen so that 𝑡𝑙𝑖−1 <

𝑡𝑙𝑖−1
+ 𝑤 ≤ 𝑡𝑙𝑖  for 𝑖 = 1,2, … … , 𝑁. Then 𝑡𝑙1

= 𝑡𝑙 ≤ 𝜎 + 𝜏 

and 𝑡𝑙𝑖 ≤ 𝑡𝑙𝑖−1 + 𝜏 ≤ 𝑡𝑙𝑖−1
+ 𝑤 + 𝜏 for 𝑖 = 1,2, …… , 𝑁. 

Let0 < 𝐴 − 𝑖𝑑 ≤ 𝑎  𝜌1 .  
We will prove that 

                 𝑚 𝑡 ≤ 𝐴 − 𝑖𝑑 3.9 𝑖 

 for 𝑡 > 𝑡𝑙𝑖 ,   𝑖 = 1,2, … … . , 𝑁. 

To prove(3.9)𝑖, suppose for the sake of 

contradiction that there exist some 𝑡 ≥ 𝑡𝑙1
= 𝑡𝑙 for 

which 𝑚 𝑡 > 𝐴 − 𝑖𝑑. Then let 𝑡 = inf 𝑡 ≥ 𝑡𝑙 𝑚 𝑡 >
𝐴 − 𝑖𝑑}. Thus 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1) for some 𝑘 ≥ 𝑙. Since 

𝑚 𝑡𝑘 ≤ 𝑔 𝑚 𝑡𝑘
−  ≤ 𝑔 𝐴 < 𝐴 − 𝑖𝑑 then 𝑡 ∈

 𝑡𝑘 , 𝑡𝑘+1 . Moreover 𝑚 𝑡  = 𝐴 − 𝑖𝑑 and 𝑚(𝑡) ≤ 𝐴for𝑡 ∈
[𝑡𝑘 , 𝑡  ]. Let 𝑡 = sup 𝑡 ∈  𝑡𝑘 , 𝑡   𝑚 𝑡 ≤ 𝑔(𝐴)}.  Since 
𝑚 𝑡  = A > 𝑔 𝐴 ≥ 𝑚 𝑡𝑘 , then 𝑡 ∈  𝑡𝑘 , 𝑡  , 𝑚 𝑡  = 𝑔(𝐴) 

and 𝑚(𝑡) ≥ 𝑔(𝐴) for 𝑡 ∈ [𝑡 , 𝑡 ]. Thus for 𝑡 ∈ [𝑡 , 𝑡 ) and 
𝛼 ≤ 𝑠 ≤ 𝑡, we have 𝑔(𝑚 𝑠 ) ≤ 𝑔(𝐴) ≤ 𝑚(𝑡). So 

𝑔(𝑚 𝑠 ) ≤ 𝑚 𝑡  for 𝑡 ∈ [𝑡 , 𝑡 ] and max{𝛼, 𝑡 − 𝑞(𝑉 𝑡 ) ≤
𝑠 ≤ 𝑡}. By condition (ii), 𝑚′(𝑡) ≤ 𝑝 𝑡 𝑐(𝑉 𝑡 ) for 

𝑡 ∈ [𝑡 , 𝑡 ] and thus (3.4) holds true. However 

 
𝑑𝑠

𝑐(𝑠)
=  

𝑑𝑠

𝑐(𝑠)
=

𝐴−𝑖𝑑

𝑔(𝐴)

 
𝑑𝑠

𝑐(𝑠)
−  

𝑑𝑠

𝑐(𝑠)
         (3.10)

𝑑

𝐴−𝑖𝑑

𝐴

𝑔(𝐴)

𝑚 𝑡  

𝑚 (𝑡  )

 

Since 𝑏 (𝜖) ≤ 𝐴 then 𝑔  𝑏  𝜖  ≤ 𝑔 𝐴 ≤ 𝐴 −

𝑖𝑑 < 𝐴  and so 
1

𝑐(𝑠)
≤ 𝑀 for 𝐴 − 𝑖𝑑 ≤ 𝑠 ≤ 𝐴. Thus from 

(3.10) we get 

 
𝑑𝑠

𝑐(𝑠)

𝑚 𝑡  

𝑚(𝑡  )
≥ 𝑀2 −  𝑀𝑑𝑠 = 𝑀2 − 𝑑𝑀 > 𝑀2 −

𝑑

𝐴−𝑖𝑑

𝑀2−𝑀1=𝑀1. 

This contradicts (3.4) and so (3.9)𝑖  holds.  

This proves the first part.  
The proof of second part is similar. 

Suppose that  (3.9)𝑖holds for some 1 ≤ 𝑖 ≤ 𝑁. 

We prove that  
𝑚 𝑡 ≤ 𝐴 −  𝑖 + 1 𝑑, 𝑡 ≥ 𝑡𝑙𝑖+1

. (3.9)𝑖+1 

Assume for the sake of contradiction that there exist 
some 𝑡 ≥ 𝑡𝑙𝑖  for which 𝑚 𝑡 > 𝐴 −  𝑖 + 1 𝑑. Then 

define 𝑡 = inf 𝑡 ≥ 𝑡𝑙𝑖  𝑚 𝑡 > 𝐴 − (𝑖 + 1)𝑑} and let 
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 𝑘 ≥ 𝑙𝑖+1 be chosen so that  𝑡 = [𝑡𝑘 , 𝑡𝑘+1). Since 

𝑏  𝜖 ≤ 𝐴 − 𝑖𝑑 ≤ 𝑎 (𝜌1) then 𝑔 𝐴 − 𝑖𝑑 <  𝐴 − 𝑖𝑑 − 𝑑 

and so 𝑚(𝑡𝑘) ≤ 𝑔(𝑚 𝑡𝑘
− ≤ 𝑔 𝐴 − 𝑖𝑑 < 𝐴 −  𝑖 +

1 𝑑. Thus𝑡 ∈ (𝑡𝑘  , 𝑡𝑘+1).   

Moreover 𝑚 𝑡  = 𝐴 −  𝑖 + 1 𝑑 and 𝑚 𝑡 ≤ 𝐴 −
 𝑖 + 1 𝑑 for  𝑡 ∈  𝑡𝑘 , 𝑡  . Define 𝑡  as before. Since 

𝑚 𝑡  = 𝐴 −  𝑖 + 1 𝑑 > 𝑔 𝐴 − 𝑖𝑑 ≥ 𝑚 𝑡𝑘  then 

𝑡 ∈  𝑡𝑘 , 𝑡  , 𝑚 𝑡  = 𝑔 𝐴 and  𝑚 𝑡 ≥ 𝑔 𝐴 for  𝑡 ∈  𝑡 , 𝑡  . 
Thus we obtain inequality (3.4) as before. However,  

 
𝑑𝑠

𝑐(𝑠)
=  

𝑑𝑠

𝑐(𝑠)

𝐴−(𝑖+1)𝑑

𝑔(𝐴−𝑖𝑑 )

𝑚 𝑡  

𝑚 (𝑡  )

=  
𝑑𝑠

𝑐(𝑠)
−  

𝑑𝑠

𝑐(𝑠)
    (3.11)

𝐴−𝑖𝑑

𝐴−(𝑖+1)𝑑

𝐴−𝑖𝑑

𝑔(𝐴−𝑖𝑑)

 

Since 𝑏  𝜖 ≤ 𝐴 − 𝑖𝑑 ≤ 𝑎 (𝜌1)  then 𝑔  𝑏  𝜖  ≤

𝑔 𝐴 − 𝑖𝑑 < 𝐴 −  𝑖 + 1 𝑑 < 𝐴 − 𝑖𝑑 ≤ 𝑎 (𝜌1) and 

so
1

𝑐(𝑠)
≤ 𝑀  for  𝐴 −  𝑖 + 1 𝑑 ≤ 𝑠 ≤ 𝐴 − 𝑖𝑑. Thus from 

(3.11), we get 

 
𝑑𝑠

𝑐(𝑠)

𝑚 𝑡  

𝑚(𝑡  )
≥ 𝑀2 −  𝑀𝑑𝑠 = 𝑀2 − 𝑑𝑀 >

𝐴−𝑖𝑑

𝐴−(𝑖+1)𝑑

                          𝑀2+𝑀1−𝑀2=𝑀1.   (3.12) 

 
This contradicts (3.4)and so (3.9)𝑖+1 holds. 

By the induction, we know that  (3.9)𝑖holds for 

𝑖 = 1,2, … … . . , 𝑁. In particular,  for  𝑖 = 𝑁, we have 

𝑏 ( 𝑥 𝑡  ≤ 𝑉 𝑡 = 𝑚 𝑡 ≤ 𝐴 − 𝑁𝑑 ≤ 𝑎  𝜌1 −

𝑁𝑑 ≤ 𝑏  𝜖 ,𝑡 ≥ 𝜎 + 𝑇 ≥ 𝑡𝑙𝑁 . 

Thus 
 𝑥(𝑡) < 𝜖 for 𝑡 ≥ 𝜎 + 𝑇.  

This completes the proof. 
Theorem 3.2 

Assume that there exist functions 𝑎, 𝑏, 𝑐 ∈ 𝐾1 ,
𝑝, 𝑞 ∈ 𝑃𝐶 𝑅+, 𝑅+ , 𝑔, 𝑔 ∈ 𝐾2 where 𝑠 ≤ 𝑔 (𝑠) ≤ 𝑔(𝑠) for 

𝑠 > 0 and 𝑉:  𝑡∗, ∞ × 𝑆 𝜌 → 𝑅+, where 𝑉 is 

continuous on  𝑡𝑘−1 , 𝑡𝑘 × 𝑆 𝜌1 for= 1,2, … .. . Assume 

that the following conditions hold: 
𝑖)     𝑏( 𝑥 ) ≤ 𝑉(𝑡, 𝑥 𝑡 ) ≤ 𝑎( 𝑥 ) for all 𝑡, 𝑥 ∈
        [𝑡∗,∞) × 𝑆(𝜌) 
ii) 𝑉 ′ 𝑡, 𝑥 𝑡  ≤ −𝑝 𝑡 𝑐(𝑉(𝑡, 𝑥 𝑡 ) for any 

solution𝑥 𝑡 = 𝑥(𝑡, 𝜎, 𝜑) of (2.1) and (2.2) 

whenever𝑉 𝑡, 𝑥 𝑡  > 𝑔(𝑉 𝑠, 𝑥 𝑠  for𝛼 ≤ 𝑠 ≤ 𝑡; 

iii) 𝑉 𝑡𝑘 , 𝑥 + 𝐼 𝑡𝑘 , 𝑥  ≤ 𝑔  𝑉 𝑡𝑘
−, 𝑥  for each𝑘 ∈ 𝑍+and 

all𝑥 ∈ 𝑆(𝜌1) 
iv) 

𝜇 =

 𝑡𝑘 − 𝑡𝑘−1 > 0,   𝑀2 =  
𝑑𝑠

𝑐(𝑠)

𝑔(𝑢)

𝑢
𝑢>0

𝑠𝑢𝑝

𝑘∈𝑍+
𝑖𝑛𝑓

and  𝑀1 =

 𝑝(𝑠)𝑑𝑠 > 𝑀2
𝑡𝑘+1

𝑡𝑘𝑘∈𝑍+

𝑖𝑛𝑓
 

Then the trivial solution of (2.1) and (2.2) is 
uniformly asymptotically stable. 
Example: Consider the equation  

           𝑥 ′ 𝑡 = 𝑓 𝑡, 𝑥 𝑡  + 𝑔 𝑡, 𝑥 𝑡 − 𝜏   

                   +   𝑡, 𝑢, 𝑥 𝑡 + 𝑢  𝑑𝑢, 𝑡 ≥ 0           (3.13)

0

−∞

 

∆𝑥 𝑡𝑘 = 𝐼 𝑡𝑘 , 𝑥 𝑡𝑘
−  , 𝑘 ∈ 𝑍+                                    (3.14) 

where 𝜏 > 0, 𝑓, 𝑔 ∈ 𝐶 𝑅+ × 𝑅, 𝑅 , 𝑓 𝑡, 0 ≡

0,  𝑔 𝑡, 𝑥  ≤ 𝑏 𝑡  𝑥  𝑏 ∈ 𝐶 𝑅+, 𝑅+  , (𝑡, 𝑢, 𝑣) is 

continuous on 𝑅+ ×  −∞, 0 × 𝑅,  (𝑡, 𝑢, 𝑣) ≤
𝑚 𝑢  𝑣 , (𝑚 ∈ 𝐶 𝑅+, 𝑅+ ) and  𝑥 + 𝐼(𝑡𝑘 , 𝑥) ≤ 𝜆 𝑥  for 

𝑥 ∈ 𝑅, where 0 < 𝜆 < 1 is a constant. Suppose that 

there are constants 𝜇 > 0, 𝐿 > 0 such that  

 
𝑓 𝑡, 𝑥 

𝑥
 + 𝜆−1  𝑏 𝑡 +  𝑚 𝑢 𝑑𝑢

0

−∞

 ≤ 𝐿, 𝑡 ≥ 0, 

                 𝑥 ≠ 0                                                                    (3.15) 

            𝑡𝑘 − 𝑡𝑘−1 ≤ 𝜇 < −
𝑙𝑛𝜆

𝐿
, 𝑘 ∈ 𝑍+                          (3.16) 

Then the zero solution of (3.13) and (3.14) is 
U.A.S 

In fact, from (3.15), we can choose a constant 
𝐴 > 0 and a continuous function 𝑞:  0, ∞ →  0,∞ , 𝑞 is 
non increasing, 𝑞(𝑠) ≥ 𝜏such that 

 𝑚 𝑢 𝑑𝑢 ≤ 𝐴 𝑠,

−𝑞(𝑠)

−∞

𝑡𝑘 − 𝑡𝑘−1 ≤ 𝜇 <
−2𝑙𝑛𝜆 + 𝐴

2(𝐿 + 𝐴)
 

Let𝑉 𝑡, 𝑥 = 𝑥2, 𝑔 𝑠 = 𝜆2 𝑠 , 𝑐 𝑠 = 𝑠. Then  

𝑉 𝑡𝑘 , 𝑥 + 𝐼 𝑡𝑘 , 𝑥  =  𝑥 + 𝐼 𝑡𝑘 , 𝑥  2 ≤ 𝜆2𝑥2

= 𝑔(𝑉 𝑡𝑘
−, 𝑥 ) 

When 𝑔(𝑉 𝑠, 𝑥 𝑠  < 𝑉 𝑡, 𝑥 𝑡  , for−∞ < 𝑠 ≤ 𝑡, 

we have  

𝑉 ′ 𝑡, 𝑥 .   ≤ 2𝑥 𝑡 𝑓 𝑡, 𝑥 𝑡  + 2𝑏 𝑡  𝑥 𝑡   𝑥 𝑡 − 𝜏  

+ 2 𝑥(𝑡)  𝑚 𝑣 − 𝑡  𝑥 𝑣  𝑑𝑣

𝑡

−∞

 

≤ 2 𝑥 𝑡  2   
𝑓 𝑡, 𝑥 𝑡  

𝑥 𝑡 
  + 𝜆−1  𝑏 𝑡 +  𝑚 𝑢 𝑑𝑢

0

−∞

  

≤ 2 𝑥 𝑡  2 

And 

 
𝑑𝑠

𝑐(𝑠)
= −2 ln 𝜆 ,     2𝐿𝑑𝑠 ≤ 2𝐿𝜇 < −2 𝑙𝑛

𝑡𝑘+1

𝑡𝑘

𝑢

 𝑔(𝑢)
𝜆 .  

From Theorem 3.2, we see that the zero 
solution of (3.13) and (3.14) is uniformly stable. 
Without any loss of generality, we may assume that 

 𝑥 (−∞,𝑡] ≤ 1.Thus if 

𝑔(𝑉 𝑠, 𝑥 𝑠  < 𝑉 𝑡, 𝑥 𝑡  , for𝑚𝑎𝑥{−∞, 𝑡 −

                                                      𝑞(𝑉 𝑡, 𝑥 𝑡 ) } ≤ 𝑠 ≤ 𝑡.  
We have 

𝑉 ′ 𝑡, 𝑥 .   ≤ 2𝑥 𝑡 𝑓 𝑡, 𝑥 𝑡  + 2𝑏(𝑡) 𝑥 𝑡   𝑥 𝑡 − 𝜏  

+ 2 𝑥(𝑡)  𝑚 𝑣 − 𝑡  𝑥 𝑣  𝑑𝑣

𝑡

−∞

 

≤ 2𝑥 𝑡 𝑓 𝑡, 𝑥 𝑡  + 2𝜆−1𝑏 𝑡  𝑥 𝑡  2                        

                 + 2 𝑥 𝑡   𝑚 𝑣 − 𝑡  𝑥 𝑣  𝑑𝑣

𝑡

𝑡−𝑞 𝑉 𝑡 ,𝑥 .   

 

                  +2 𝑥(𝑡)  𝑚 𝑣 − 𝑡  𝑥 𝑣  𝑑𝑣

𝑡−𝑞 𝑉 𝑡 ,𝑥 .   

−∞
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≤ 2 𝑥 𝑡  2   

𝑓 𝑡, 𝑥 𝑡  

𝑥 𝑡 
  + 𝜆−1  𝑏 𝑡 +  𝑚 𝑢 𝑑𝑢

0

−∞

 

+ 2 𝑥 𝑡   𝑚 𝑢 𝑑𝑢

−𝑞 𝑉 𝑡 ,𝑥 .   

−∞

 

≤  2(𝐿 + 𝐴) 𝑥 𝑡  2 

And 

 
𝑑𝑠

𝑐 𝑠 
= −2 ln 𝜆 ,    2 𝐿 + 𝐴 𝑑𝑠 ≤ 2 𝐿 + 𝐴 𝜏 <

𝑡𝑘+1

𝑡𝑘

𝑢

𝑔(𝑢)

−2 𝑙𝑛𝜆 .  

 
From Theorem 3.1, the zero solution of (3.13) 

and (3.14) is uniformly asymptotically stable. 
Conclusion 

In the present paper, we conclude that certain 
impulsive perturbations may make unstable systems 
uniformly stable, even uniformly asymptotically stable. 
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